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Percolation in Yukawa fluids and clusters with a fractal structure
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Extension in the effective rangek21 of the attractive force does not vary the maximum depth of the Yukawa
potential ui j

Y(r ), so that a cluster consisting of particles linked as particle pairs satisfying the criterion
E(pi j )<2ui j

Y(r ) with the relative kinetic energyE(pi j ) cannot develop considerably ask21 increases. A
tendency toward the generation of percolation resulting from such clusters is less dominant than that toward the
aggregation of particles, resulting in only phase separation ask21 increases. The pair connectedness function
for estimating such percolation can be expanded in powers of the pair potential. These powers include half-
integer indices. As a result, it is predicted that clusters formed at least by the contribution of a sufficiently
long-ranged attractive force can exhibit a fractal structure even in a Yukawa fluid. The structure has a fractal
dimension of 1.5, which is near that for the cluster-cluster aggregation.@S1063-651X~98!07811-8#

PACS number~s!: 61.43.Hv, 64.60.Ak
us
s
en
er

d

f
-

e

it
rti
-
o

in
t

se
e
e

s

d
an
u

uc
m

in

is

an
rac-
u-

m-

a
t

d

n

he
e-
rion
s

is
pairs

ce
ive
is
the
o-
of

nge

tate
stic
hell

er-
use

ed
i-
I. INTRODUCTION

Particular properties of a fluid can be influenced by cl
ters formed by the attractive force between particles con
tuting the fluid. Present interest will be focused on the g
eration of nonuniform states due to the formation of clust
created by the attractive force.

The electrical conductivity of liquid mercury maintaine
at low density at a temperature near the critical point,Tc ,
decreases with a rather steep gradient as the density o
mercuryrHg

decreases@1# The difference between the ab

sorption of infrared at a particular densityrHg
5rHg

8 and that

at a density belowrHg
8 increases as temperature decreas

This difference at temperatures lower thanTc is much larger
than that nearTc @2#. For anHg fluid nearTc , the real part of
the dielectric constant determined using optical reflectiv
and absorption measurements increases sharply at a pa
lar density asrHg

increases@3#. For inducing these phenom
ena, nonuniform fluid states resulting from the formation
clusters ofHg atoms in eachHg fluid can play a role. The
lowest energy required for exciting an electron contribut
to the formation of a cluster decreases toward zero as
number of metallic atoms constructing the cluster increa
The distribution of cluster sizes in a fluid consisting of m
tallic atoms is a factor which determines the dependenc
optical absorption on the frequency of light@4#.

Near liquid-vapor critical points, the viscosities of fluid
exhibit asymptotic divergence. Berg and Moldover@5# deter-
mined the critical exponent characterizing the asymptotic
vergence by measuring the viscosities of carbon dioxide
xenon near their critical points. In these fluids, the distrib
tion of particles can never be uniform due to the large fl
tuations in densities. Such fluctuations can result in ano
lies for the electrical and optical properties of theHg fluids.
Similarly, the fluctuations can result in a characteristic
crease in the viscosities of fluids near the critical points@6#.

A factor enhancing the generation of the nonuniform d
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tribution is the attractive force between particles which c
drive the phase separation. The effective range of the att
tive force contributes to the characteristics of the distrib
tion. In fact, the effective range of the force can be an i
portant factor that determines the liquid phase stability@7#.

In order to include this factor in the present study,
bound state for a pair ofi and j particles is defined as tha
satisfying the conditionE(pi j )<2ui j (r ), with the pair po-
tential ui j (r ) and relative kinetic energyE(pi j ).

An alternative definition given in Ref.@8# depends on the
distancer between thei andj particles, and provides a boun
state for a pair ofi and j particles if r satisfiesr<r 8 for a
particular valuer 8. The criterionr<r 8 for the bound state is
simple. However, it is difficult to distinguish the conditio
E(pi j ).2ui j (r ) for r<r 8 from the condition E(pi j )<
2ui j (r ) for r<r 8. Therefore, the bound state defined by t
criterion r<r 8 provides a less satisfactory temperature d
pendence than that of the bound state defined by the crite
E(pi j )<2ui j (r ). In the present work, such a difficulty i
avoided, since the conditionE(pi j )<2ui j (r ) is applied as
the criterion for defining the bound state.

Thus, a cluster resulting in the nonuniform distribution
assumed as an ensemble of particles joined as particle
satisfying the conditionE(pi j )<2ui j (r ). Such clusters can
result in percolation@9#. In the present work, the dependen
of such percolation on the effective range of the attract
force is studied. Using a Yukawa fluid, particular attention
paid to the dependence of the liquid phase stability on
effective range of the attractive force given by the pair p
tential @7#. Here, attention is focused on the dependence
the generation of the percolation state on the effective ra
of the attractive force.

The dependence of the generation of the percolation s
on the effective range can be found by applying a heuri
percolation criterion to systems composed of core-soft-s
spheres with an attractive square-well potential@10#. For
Yukawa fluids, the dependence of the generation of the p
colation state on the effective range can be estimated by
of an adjustable parameter@11#.

In order to simplify the estimate of the percolation bas
on the criterionE(pi j )<2ui j (r ), an appropriate mathemat
5808 © 1998 The American Physical Society
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PRE 58 5809PERCOLATION IN YUKAWA FLUIDS AND CLUSTERS . . .
cal treatment is required for solving the integral equation
the pair connectedness. The approximate treatment give
the present work is similar to the mean spherical approxim
tion ~MSA! for the Ornstein-Zernike equation and results
a simple estimate for the Yukawa fluids. However, the pow
of the pair potential in the closure for solving the integ
equation differs from that in the closure for the MSA. Th
closure including the term@ui j (r )#3/2 is derived in Sec. III.
To obtain analytical solutions for a Yukawa fluid, the closu
must be approximated. Two approximations for the clos
can be used. An approximation overestimates the deca
the closure due to the factor ofr 23/2. Another approximation
overestimates the long-ranged contribution of the closure
Sec. IV, it is demonstrated that the pattern of the phase
grams resulting from the former is similar to that resulti
from the latter. The pair connectedness in the present w
exhibits the distribution of particles within a cluster whe
the particles are linked via bonds defined as bound state
pair particles satisfying the conditionE(pi j )<2ui j (r ). To
the creation of the cluster in a fluid, either particle-clus
aggregation or cluster-cluster aggregation contribute. If
distribution of the particles has a fractal structure, it may
a characteristic resulting from the cluster-cluster aggregat
According to the expansion of the pair connectedness
powers of a pair potential, the clusters generated in
Yukawa fluid can have a fractal structure when the attrac
force is long-ranged. In Sec. V, it is demonstrated tha
fractal dimension for the structure is close to that for t
fractal structure resulting from cluster-cluster aggregation

II. PAIR CONNECTEDNESS

The pair connectednessPi j (r ) for estimating the percola
tion is introduced as the probabilityr ir j Pi j (r )dr idr j that
both ani particle in a volume elementdr i and aj particle in
a volume elementdr j belong to the same physical cluster.
the above,r i andr j are the densities of thei and j particles,
respectively, for a uniform distribution. If a cluster has
fractal structure,Pi j (r ) should provide the characteristics
the fractal structure. If the probability that thei particle indr i
and thej particle indr j do not belong to the same cluster
expressed asr ir jDi j (r )dr idr j , Pi j (r ) can be related to the
pair correlation functiongi j (r ) as gi j 5Pi j 1Di j . Here, the
physical meanings ofPi j and of Di j require lim

r→`
Pi j 50

and lim
r→`

Di j 51, since lim
r→`

gi j 51.

On the other hand, to distingish between a bound s
E(pi j )<2ui j and an unbound stateE(pi j ).2ui j in the ex-
pression ofgi j (r ), which can be given using the grand pa
tition function, the factor exp(2buij) is expressed as the su
of two factors given as

e2bui j 5pb~r !e2bui j 1@12pb~r !#e2bui j , ~1!

whereb is defined asb[1/kT. Here,k is Boltzmann’s con-
stant andT is the temperature. In Eq.~1!, pb(r ) ~the so called
pairwise bond probability! is the probability that a pair ofi
and j particles satisfies the conditionE(pi j )<2ui j , so that
pb(r ) can be expressed as
r
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pb~r !52p21/2E
0

2bui j
y1/2e2ydy, ~2!

where y5@bE(pi j )#1/2 @8#. If 2bui j ,0, the probability
must bepb(r )50.

According to Eq.~1!, the Mayer f function f i j 5e2bui j

21 is given as the sum off i j
1[pb(r i j )e

2bui j and f i j* [@1
2pb(r i j )#e2bui j 21. Using this sum, Mayer’s mathematic
clusters~diagrams defined in terms off bonds! constituting
gi j can be expressed as those composed off i j

1 ~each f i j
1 is

defined in terms of anf 1 bond! and f i j* . The f 1 bond cor-
responds to a pair of particles satisfying the conditi
E(pi j )<2ui j . If particles are joined by thef 1 bonds, the
ensemble of the particles forms a physical cluster. The ph
cal cluster consists of the particles contributing to a diagr
with at least one path of all thef 1 bonds between the roo
points i and j, at which thei and j particles are located
Hence, the collection of such diagrams is that which contr
utes toPi j .

The collection of diagrams contributing toPi j can be
separated into the sum of two parts, given byCi j

1 andNi j
1 .

Here, the partCi j
1 is the contribution of non-nodal diagram

with at least one path of allf 1 bonds betweeni and j. The
partNi j

1 represents the contribution of nodal diagrams with
least one path of allf 1 bonds betweeni and j. Hence,Ni j

1

can be determined by the convolution integral of the prod
of Ci j

1 and Pi j . Thus, Pi j can be expressed by an integr
equation@9# having the same mathematical structure as
Ornstein-Zernike equation, as

Pi j 5Ci j
11 (

k51

m

rkE Cik
1Pk jdr k , ~3!

wherem is the number of species.

III. APPROXIMATION SIMILAR TO MSA

For some fluids, analytical solutions of the Ornste
Zernike equation can be obtained by considering the m
spherical approximation~MSA!. In the MSA, the direct cor-
relation functionci j is given as the sum of the short-range
and long-ranged contributions. Similarly, Eq.~3! could be
solved simply ifCi j

1 can be given as the sum of the sho
ranged and long-ranged contributions.

Fortunately, the behavior ofCi j
1 for a large distance be

tweeni and j can be readily determined. Using the contrib
tion Ni j of the nodal diagrams forf bonds, the pair-
correlation functiongi j

PY due to the Percus-Yevick~PY!
approximation can be given bygi j

PYebui j 511Ni j . Further-
more,Ni j can be separated intoNi j

1 and a remainderNi j* ~i.e.,
all nodal diagrams which do not include paths of allf 1

bonds betweeni and j ), so that the PY approximation i
expressed asgi j

PY5e2bui j (11Ni j
11Ni j* ). If, with use of the

above, the relationsPi j 5Ci j
11Ni j

1 , e2bui j 5 f i j
11 f i j* 11, and

gi j 5Pi j 1Di j are considered,gi j
PY due to the PY approxima

tion results in

Pi j 5 f i j
1gi j

PYebui j 1~ f i j* 11!~Pi j 2Ci j
1! ~4a!

and
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Di j 5 f i j* 111Ni j* ~ f i j* 11!

5~ f i j* 11!gi j
PYebui j 2~ f i j* 11!~Pi j 2Ci j

1!. ~4b!

By considering f i j
15pb(r )e2bui j , e2bui j 5 f i j

11 f i j* 11, and
the PY approximationgi j

PY(12ebui j )5ci j
PY, Eq. ~4a! can be

rewritten as

Pi j 1
@12pb~r !#e2bui j

12@12pb~r !#e2bui j
Ci j

1

5
pb~r !ci j

PY

~12ebui j !$12@12pb~r !#%e2bui j
. ~5!

When the distance betweeni andj is sufficiently large,ubui j u
should be small. Equation~2! can then be given approxi
mately as

pb~r !5
4

3Ap
~2bui j !

3/22
4

5Ap
~2bui j !

5/2

1
2

7Ap
~2bui j !

7/21•••.

The substitution of this approximation into Eq.~5! results in

Ci j
15

ci j
PY

2bui j
S 4

3Ap
~2bui j !

3/2

2
22

15Ap
~2bui j !

5/21••• D
1Pi j S 2bui j 2

4

3Ap
~2bui j !

3/22
1

2
~2bui j !

2

1
32

15Ap
~2bui j !

5/21••• D .

If ci j
PY/(2bui j )51 for the MSA is substituted into this re

sult, Ci j
1 for 1!r can be given as Ci j

1'
4/(3Ap)(2bui j )

3/2. Here, the condition (2bui j )Pi j

!4/(3Ap)(2bui j )
3/2 has been assumed for 1!r .

For the PY approximation and the MSA, the correlati
function gi j satisfies the relation given as

lim
r→`

gi j 21

2bui j
5 lim

r→`

1

2bui j
S ci j

PY

12exp~bui j !
21D 5

1

2
.

The conditionPi j /(gi j 21)<1 is always satisfied, sincegi j
215Pi j 1Di j 21. As a result, the magnitude ofPi j for 1
!r should satisfy

gi j 21

2bui j
>

Pi j

2bui j
.

Pi j

~2bui j !
1/2

.

Therefore, the following relation can be derived:
1

2
. lim

r→`

Pi j

~2bui j !
1/2

50,

and the above assumption can provide validity.
Thus, an approximation similar to the MSA can be o

tained for solving Eq.~3! as

Ci j
15Ci j

011
4

3Ap
~2bui j !

3/2, ~6!

whereCi j
01 is the short-ranged contribution. By considerin

that a hard-core potential resulting in the completely sho
ranged interaction betweeni and j particles does not directly
contribute to the interaction between them located beyon
particular distances i j , it is assumed that

Ci j
01~r !50 for r>s i j , ~7!

wheres i j is given ass i j 5
1
2 (s i1s j ) with the diameters i of

the hard core of thei particle and the diameters j of the hard
core of thej particle. If the short-ranged contributionCi j

01

can be neglected forr>s i j , the mathematical treatment fo
Eq. ~3! is considerably simplified, as it was in the MSA. A
a result, the use of Eq.~7! can simplify the estimation of the
percolation.

In order to solve Eq.~3! analytically for a fluid consisting
of hard spheres interacting with the Yukawa potential giv
as

ui j
Y~r !52Ki j

1

r
exp@2k~r 2s i j !#,

the long-ranged contribution in Eq.~6! must be somewha
modified as

Ci j
1~r !5Ci j

01~r !1K̂ i j

e2zr

r
, ~8a!

where

K̂ i j [
4

3Ap
~bKi j !

3/2s i j
21/2ezs i j , ~8b!

with

z[
1

2S 3k1
1

s i j
D . ~8c!

Here, K̂ i j and z are approximated by requiring the relatio
4/(3Ap)@2bui j (r )#3/25K̂ i j e

2zr/r for 0,r 2s i j !1.
In addition, the above requirement results in an appro

mate expression given as

1

r 3/2
5

e1/2

As i j

1

r
expF2

r

2s i j
G . ~9!

This means that the condition ofk50 does not correspond
to that ofz50 when the approximation is applied. Thus, o
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using the approximation given by Eq.~9!, the decay of
Ci j

1(r ) due to the factor ofr 23/2 can be somewhat overest
mated.

IV. PERCOLATION THRESHOLD

Using Eq.~8a! and Baxter’sQ function @12#, Eq. ~3! can
be solved analytically@11#. If the calculations for the
Orstein-Zernike equation@12–14# are considered,P(r ) and
C1(r ) satisfying Eq.~3! for a Yukawa fluid composed of a
single component are given by

2prP~r !52
d

dr
Q~r !12prE

0

`

Q~ t !~r 2t !P~ ur 2tu!dt

~10!

and

2prC1~r !52
d

dr
Q~r !1rE

0

`

Q~ t !
d

dr
Q~r 1t !dt.

~11!

The functionQ(r ) in Eqs.~10! and ~11! is introduced as

Q̃~k!512rE
0

`

eikrQ~r !dr ~12a!

and can be of the forms given by Eqs.~7! and ~8a! as

Q~r !5~r 2s!q́1C̆~e2zr2e2zs!1D̆e2zr ~r ,s!
~12b!

and

Q~r !5D̆e2zr ~s<r !. ~12c!

In Eqs.~12b! and~12c!, s is the diameter of the hard core o
a particle. The unknown coefficientsC̆, D̆, and q́ in Eqs.
~12b! and~12c! can be determined using Eqs.~10! and~11!.

If lim ui j→`Pi j 50 due to Eq.~4! and Eq.~12b! are con-

sidered, Eq.~10! for r ,s results in

2q́1zC̆e2zr1zD̆e2zr22prD̆e2zrE
0

`

P~ t !e2zttdt50.

~13!

Thus, the relation between the left- and right-hand sides
Eq. ~13! gives the restrictions for the coefficients as

q́50 ~14a!

and

C̆52@12 P̂~z!#D̆, ~14b!

where

P̂~z![2p
r

zE0

`

P~ t !e2zttdt. ~14c!

By consideringC01(r ) and Eq.~12c!, Eqs. ~8a! and ~11!
result in
in

2pK̂5zD̆2zrD̆Q̂~z!, ~15!

where

Q̂~s![E
0

`

Q~ t !e2stdt

5C̆e2zsS ezs2e2ss

s1z
2

12e2ss

s D1D̆
1

s1z
. ~16!

The expression given by Eq.~16! can be obtained by subst
tuting Eq.~12b! into the integral.

On the other hand, Eq.~10! for r ,s can be expressed a

05zC̆e2zr1zD̆e2zr12prE
r

`

Q~ t !~r 2t !P~ ur 2tu!dt.

~17!

Equation~17! is equivalent to Eq.~13! which has no singu-
larity for 0,r ,`, so that Eq.~17! is satisfied for 0,r
,`. Then, if each factor given by Eq.~17! is subtracted
from each factor given by Eq.~10!, a formula fors<r can
be obtained as

2prP~r !52zC̆e2zr12prE
0

r

Q~ t !~r 2t !P~r 2t !dt.

~18!

The Laplace transformation of Eq.~18! results in a relation
betweenP̂(z) andQ̂(z) as

z

r
P̂~z!@12rQ̂~z!#52

1

2
C̆e22zs. ~19!

By considering Eq.~14b!, the substitution of Eq.~16! into
Eq. ~15! results in

D̆

s2
5

pzs

6f

3

12S 12
24f

~zs!2

K̂

s
$12~12e2zs!2@12 P̂~z!#% D 1/2

12~12e2zs!2@12 P̂~z!#
,

~20!

wheref is the volume fraction defined as

f[
p

6
rs3.

On the other hand, by again considering Eq.~14b!, the
substitution of Eq.~16! into Eq. ~19! yields

D̆

s2
5

pzs

3f

3
P̂~z!

e22zs12P̂~z!e2zs~12e2zs!1@ P̂~z!#2~12e2zs!2
.

~21!
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Using Eqs.~19! and ~20!, the unknown coefficientsD̆ and
P̂(z) can then be determined.

On using Baxter’sQ function, the mean cluster sizeS@11#
can be obtained as

S5@12rQ̂~0!#22. ~22!

Using Eqs.~14b! and Eq.~16!, Q̂(0) can be determined as

zQ̂~0!52e2zs~ezs212zs!@12 P̂~z!#D̆1D̆. ~23!

By substituting Eq.~22! into Eq. ~21!, the mean cluster size
S is given as

S5S 12
6f

pzs

D̆

s2
$~11zs!e2zs

1@12~11zs!e2zs# P̂~z!% D 22

. ~24!

Therefore, the percolation threshold, at which 12rQ̂(0)
50 should hold, can be estimated using the following eq
tion:

F 6f

pzs

D̆

s2G21

2~11zs!e2zs2@12~11zs!e2zs# P̂~z!50.

~25!

Equation~24! is derived from Eq.~23!. The value ofP̂(z) at
the percolation threshold is obtained by substituting Eq.~20!
into Eq. ~24!, as

P̂P5@~12e2zs!22212~11zs!e2zs#21

3e2zs$zs1e2zs2@~zs1e2zs!22~12e2zs!2

1222~11zs!e2zs#1/2%, ~26!

whereP̂P is the value ofP̂(z) at the percolation threshold. I
the value ofK̂ at the percolation threshold is exressed asK̂P,
the value ofK̂P can be obtained by modifying Eq.~19! as

K̂p

s
5

zs

2p

D̆P

s2
2

3f

2p2 @12~12e2zs!2~12 P̂P!#S D̆P

s2 D 2

,

~27!

where D̆P is the value ofD̆ evaluated from Eq.~20! for
P̂(z)5 P̂P. If Eq. ~8b! is considered as the relation betwe
K andK̂, the substitution of Eq.~20! into Eq. ~27! results in
a relation expressed as 1/KP}fn with n52/3. Here,KP is
the value ofK at the percolation threshold. The relatio
1/KP}fn with n51 corresponds to that given by Xu an
Stell @11#.

The percolation thresholds evaluated using Eq.~26! with
Eqs. ~8b! and ~8c! are represented for each Yukawa flu
(ks50.2,0.8,3,7.5,25) in Fig. 1. The percolation thresho
for ks53 demonstrates that the state of no percolation
the liquid phase can be induced whenf is small. This phe-
nomenon is similar to that found from the phase diagram
Ref. @9#. The phenomenon suggests that a state of low
-

n

n
s-

cosity due to the lack of percolation induced in the liqu
phase can change to another state of high viscosity due to
percolation asf increases.

If the contribution of the attractive force between particl
generates the liquid phase even when the effective rangek21

is narrow, particles in the liquid phase should be close
each other. For the generation of the liquid phase, su
ciently dense parts at least must be formed in the flu
These dense parts can correspond to high-density reg
formed as clusters due to the percolation criterion used in
present work. On the other hand, particles also must be c
to each other in order to induce the percolation, ifk21 is
small. Therefore, it is expected that the percolation state m
always be found in the liquid phase, if the liquid phase
generated even whenk21 is small. This phenomenon i
demonstrated by the diagrams given forks57.5 and 25 in
Fig. 1.

Thus, it is inferred that the liquid phase contains e
tremely large clusters, if the liquid phase is generated i
fluid consisting of particles interacting with a short-rang
attractive force. Conversely, ifk21 is not small, the genera
tion of the liquid phase does not require clusters of extrem
large size, since particles should readily be retained in
liquid phase due to the attractive force contributing ove
long range.

Moreover, the percolation thresholds given in Fig. 1 de
onstrate that the volume fractionf at the percolation thresh
old for a particular value ofK decreases as the effectiv
range k21 is extended. Behavior similar to this has be
found in a percolating system composed of core-soft-s
spheres with an attractive square-well potential@10#.

If the effective rangek21 is extended, overlaps of th
effective range due to each particle increase. The numbe
particles with which a particle interacts increases as the o
laps of the effective range increase, so the increase ink21

can enhance a cooperative effect which contributes to
formation of the nonuniform particle distribution. Thus, e
ther the generation of the percolation or the aggregation

FIG. 1. The dependence of percolation onk given by @ks
5(2zs21)/3# in the Yukawa fluids. The thick solid curves are th
loci of the percolation thresholds. The dashed curves are the lo
points for which the compressibility is infinite, and have be
evaluated on the basis of Ref.@15#. The thin solid curves are the
loci of the points in a lower region for which no real solution can
obtained for the Ornstein-Zernike equation for a fluid, and ha
been evaluated on the basis of Ref.@13#. In ~b!, no dashed curve
exists. In addition, (bK/s)21, ks, andf are dimensionless.
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particles resulting in only the phase separation can be
hanced ask21 increases. It is, however, expected that t
tendency toward the generation of percolation is less do
nant than that toward the aggregation resulting in only ph
separation. In the distribution of particles surrounding ai
particle, particles satisfying the criterionE(pi j )<ui j (r )
should not increase considerably ask21 increases, since th
increase ink21 does not deepen the Yukawa potential. T
phenomenon discussed here can be recognized in Fig.
addition, it must be considered that@bKP/s#21 given for
small values ofks in Fig. 1 can be somewhat too small.

On applying the Yukawa potential to Eq.~6!, the decrease
in Ci j

1(r ) due to the factor (e2kr)3/2 can be much more
dominant than that due to the factor (1/r )3/2, asr increases.
Considering this, the contribution from the factor (1/r )3/2 can
be approximated by 1/r in Eq. ~6!. As a result, an alternative
approximation for@2bui j (r )#3/2 can be given as

4

3Ap
@2bui j ~r !#3/2

5
4

3Ap

~bKi j !
3/2

s i j
1/2

1

r
exp@2 3

2 k~r 2s i j !#, ~28a!

so thatz must be estimated as

z5 3
2 k. ~28b!

This approximation somewhat overestimates the lo
ranged contribution ofCi j

1(r ), since the contribution of
(1/r )3/2 is approximated as (1/s i j

1/2)(1/r ). Thus,z given by
Eq. ~28b! differs fromz given by Eq.~8c!. This difference is
considerable whenks is small. Whenz is given as Eq.~28b!
instead of Eq.~8c!, the percolation in each Yukawa flui
~ks50.02,0.05,0.15,0.2,0.8,3,25! behaves as shown in Fig
2. The values of@bK/s#21 at the percolation threshol
given in Fig. 2 are larger than those at the percolation thre
old given in Fig. 1. This tendency develops as 1/ks in-
creases.

The behavior of the percolation threshold described ab
means that an overestimate for the long-ranged contribu
of Ci j

1(r ) can lead to an overestimate for@bKP/s#21. When
the decay ofCi j

1(r ) due to the increase inr is overestimated,
the value of@bKP/s#21 is smaller than that for overestima

FIG. 2. Same as in Fig. 1, except forks52zs/3.
n-
e
i-
e

In

-

h-

e
n

ing the long-ranged contribution. However, the diagra
representing the percolation behavior in Fig. 2 have the sa
pattern as those in Fig. 1. The maximum point at which
Ornstein-Zernike equation for a fluid results in a real solut
shifts to an upper position in each phase diagram as 1ks
increases. Such a shift can exceed the shift of the percola
threshold for large values of 1/ks. The overestimate for the
decay ofCi j

1(r ) due to Eq.~8c! does not cause the pattern
the diagrams in Fig. 1 to be derived. Therefore, it is inferr
that the tendency toward the generation of percolation is
dominant than that toward the aggregation, resulting in o
the phase separation as 1/ks increases.

V. THREE PARAMETERS

The numbernpair of particle pairs satisfying the boun
condition defined by the inequalityE(pi j )<2ui j

Y(r ) can in-
crease asK increases. Moreover,npair can increase, both a
k21 increases and asf increases. The variations inK, k21,
andf can result in variations inP(r ) and ing(r ) due to the
change innpair. Then, the behavior ofP(r ) andg(r ) due to
the variation inK can differ from that due to the variation i
k21, since the increase inK can enhance the magnitude
2ui j

Y(r ) in the range 0,r 2s!1, while the variation ink21

cannot change it in the range. Similarly, the behavior ofP(r )
andg(r ) due to the variation inf can differ from that due to
the variation inK. Without changes in2ui j

Y(s), increases in
k21 as well as inf lead to an increase in the number
particles with which a particle interacts. Thus, the behav
of P(r ) andg(r ) due to the increases in eitherk21 or f may
differ from that due to the increase inK.

Fortunately,P(r ) can be estimated readily in the rang
0,r 2s!1. If Eqs. ~14b! and ~18! are used with
limui j→`Pi j 50 due to Eq.~4!, it is given as

2psP~s1!5ze2zs@12 P̂~z!#D̆,

whereP(s1)[ lim
d→0

P(s1d).

The pair correlation functiong(r ) for 0,r 2s!1 can be
given on the basis of Ref.@13# as

g~s1!5gHS1
bK

s
@F0~ks,f!1ksXF1~ks,f!#22,

where

gHS5
1

12fS 11
2f

12f D ,

F0~ks,f!511
1

ks
~12e2ks!

3f

12f

2
4

~ks!3F12
ks

2
2S 11

ks

2 De2ksG
3

3f

12fS 11
ks

2
1

3f

12f D ,
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F1~ks,f!5
1

ks
~12e2ks!

2
4

~ks!3F12
ks

2
2S 11

ks

2 De2ksG 3f

12f
,

and

X~X11!S X1
F0~ks,f!

ksF1~ks,f! D
2

52
bK

s

6f

@~ks!2F1~ks,f!#2 .

In Fig. 3, the behavior described above can be recogn
as that of the ratioP(r )/g(r ) in the range 0,r 2s!1.
While the ratioP(s1)/g(s1) increases asK increases, it
hardly changes for the variations in eitherk21 or f when the
values ofk21 ands fall in the particular ranges.

FIG. 3. The ratioP(s1)/g(s1) as a function of (bK/s)21 for
the Yukawa fluids. To evaluate, Eqs.~8b! and~28b! are used for the

relation betweenK and K̂. The solid curve is determined forks
53 andf50.1. Points indicated by the solid circles (d) are de-
termined for ks50.8 and f50.1. Points represented by ope
circles (s) are determined forks50.2 andf50.1. The dashed
line with a point indicated by the symbol (3) is determined for
ks53 andf50.35. The thin solid line with a point indicated b
the symbol (3) is determined forks50.8 andf50.35. The dot-
dash line with a point indicated by the symbol (3) is determined
for ks50.2 and f50.35. Each point indicated by the symb
(3) expresses the percolation threshold. Each point denoted b
arrow expresses the maximum point at which the Ornstein-Zer
equation for a fluid results in a real solution.
d

Furthermore, whenP(r )/D(r ) is given at least in the
range 0,r 2s!1, its behavior can be considerably insen
tive to variations in eitherk21 or f, if the values ofk21 and
f fall in the particular ranges. The ratioP(r )/D(r ) can be
related toP(r )/g(r ) using P(r )/g(r )5@11D(r )/P(r )#21.
Here, D(r ) is given by Eq.~4b!, and expresses the partia
distribution of particles surrounding a particle. Then the p
ticles resulting in the partial distribution described byD(r )
do not belong to the cluster to which the particle belongs

Particles in a shell surrounding a particular particle a
having a certain thickness can be divided into two grou
One group consists ofN1 particles which belong to a cluste
with the particle. The other group consists ofN2 particles
belonging to clusters to which the particle does not belo
Extension in the effective rangek21 of the attractive force
can result in increases in bothN1 and N2 . However, the
extension does not vary the maximum depth of the Yuka
potential, so thatN1 cannot increase considerably ask21

increases. As a result, it is expected that the increase inN2 is
more dominant than that inN1 as k21 increases. This is
demonstrated in Fig. 3. According to Fig. 3, the value
P(s1)/g(s1) at the percolation threshold decreases ask21

increases. This means that the ratioN2 /N1 near the particle
increases ask21 increases, sinceg(s1) is equal toP(s1)
1D(s1).

The increase inN2 /N1 can suppress the development
clusters. As a result, ifk21 is sufficiently large, sizes of the
clusters in the fluid remain small while the fluid falls in
state where it can undergo the phase separation. Thus,
inferred that owing to the increase inN2 /N1 , the tendency
toward the generation of percolation is less dominant th
that toward aggregation, resulting in only phase separatio
k21 increases.

On the other hand, the ratioP(s1)/g(s1) at the perco-
lation threshold increases as the effective rangek21 de-
creases. This means that the number of particles mus
large near each particle to induce the percolation if the
fective range is narrow. This phenomenon is reasonable

VI. FRACTAL STRUCTURE

If clusters can be found in Yukawa fluids, it is predicte
that the clusters can have a fractal structure in the ranger
where both2bu(r )!1 and exp@2k(r2sij)#;1 can be sat-
isfied. When the magnitude of (bK/s)21 is large,2bu(r )
is small, even forr 5s. If ks is small, the magnitude o
(bK/s)21 at the percolation threshold is large as shown
Fig. 1 ~Fig. 2!. Hence, the clusters can be formed even wh
2bu(r ) is small, if ks is small. By considering this, the
expansion of Eq.~5! in powers of2bui j results in

an
e

Pi j 52
ci j

PY

2bui j
F 4

3Ap
~2bui j !

1/21
16

9p
~2bui j !1S 64

27p3/2
2

4

5Ap
D ~2bui j !

3/21•••G
1

Ci j
1

2bui j
F11

4

3Ap
~2bui j !

1/21S 1

2
1

16

9p D ~2bui j !1•••G .
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If the approximation given by Eqs.~6! and ~7! and ci j
PY/

(2bui j )51 for the MSA are considered in this expansio
the result can be expressed as

Pi j ;~2bui j !
3/2. ~29!

Hence, in the range ofr where exp@2k(r2sij)#;1 can be
satisfied, the pair connectednessP(r ) for the Yukawa poten-
tial can behave as

P~r !;r 2a, a51.5. ~30!

In the range ofr where exp@2k(r2sij)#;1 can be satis-
fied, P(r ) can decay withr 2a having a noninteger indexa.
The pair connectedness gives the average characteristi
the particle distribution in a cluster. Therefore, it is predict
that clusters resulting in a nonuniform fluid can have a fr
tal structure with the fractal dimension 1.5(532a) due to
Eq. ~30!. This fractal dimension is close to a known fract
dimension~i.e., df;1.75) for the fractal structure resultin
from cluster-cluster aggregation@16#. As far as Yukawa flu-
ids are concerned, the structure of a cluster can be fract
least in the range ofr where both 2bu(r )!1 and
exp@2k(r2sij)#;1 can be satisfied.

Then, this range should fall within the extent of the clu
ter of particles. This requirement is satisfied by the perco
ing clusters. Also, it can be satisfied even near the perc
tion thresholds, since clusters can have large sizes nea
percolation thresholds as seen in Fig. 4.

The range ofr where exp@2k(r2sij)#;1 can be satisfied
is more extensive ifks is smaller. Moreover, the magnitud

FIG. 4. The increases inS due to the increase in the volum
fraction f. The values off at the percolation thresholds are give
asf'0.115,0.394. In addition,S is dimensionless.
g

,

of

-
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of (bK/s)21 at the percolation threshold is large ifks is
small. In this case, it is inferred that the fractal structure
clusters can develop considerably, if the effective rangek21

is extensive.

VII. CONCLUSIONS

A bond between particles is defined as a bound state
tween them using the criterionE(pi j )<2ui j (r ). A cluster is
regarded as the distribution of particles linked via su
bonds. The structure linked via the bonds can have a fra
structure with the fractal dimension 1.5. This value is clo
to a fractal dimension for the fractal structure resulting fro
cluster-cluster aggregation.

The pair connectedness relevant to the distibution can
given by the integral equation. If the closure given in t
present work is used, the integral equation can be sol
somewhat readily. Using the integral equation and the c
sure, analytical estimations of percolation can be obtai
readily for a Yukawa fluid although the dependence of
closure onr must be approximated. One approximation
given as the overestimation for the decay of the closure
to the factor ofr 3/2. Another approximation is given as th
overestimation for the long-ranged contribution of the c
sure. Fortunately, the percolation behavior resulting from
former is similar to that resulting from the latter. Howeve
the values of@bK/s#21 at the percolation threshold give
by the former are smaller than those given by the latter. T
tendency develops as 1/ks increases.

Extension in the effective rangek21 enhances the forma
tion of the nonuniform particle distribution, and can result
dense parts and rare parts. In the dense parts, the increa
the number of particles which do not satisfy the conditi
E(pi j )<2ui j (r ) for a particular particle~e.g., ani particle!
can exceed the increase in the number of particles satisf
the conditionE(pi j )<2ui j (r ) for the particle, if the effec-
tive range extends sufficiently. If an effect resulting from t
former is considerable, the dense parts can be regarded
ensemble of small clusters. Therefore, a tendency toward
generation of percolation can be less dominant than tha
ward the aggregation, resulting in only phase separation
k21 increases.

In addition, the structure linked via the bonds defined
the criterionE(pi j )<2ui j (r ) can develop the fractal struc
ture ask21 increases.
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