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Percolation in Yukawa fluids and clusters with a fractal structure
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Extension in the effective range ! of the attractive force does not vary the maximum depth of the Yukawa
potential ui\j(r), so that a cluster consisting of particles linked as particle pairs satisfying the criterion
E(pij)sfuﬁ(r) with the relative kinetic energ¥(p;;) cannot develop considerably as! increases. A
tendency toward the generation of percolation resulting from such clusters is less dominant than that toward the
aggregation of particles, resulting in only phase separatioeasncreases. The pair connectedness function
for estimating such percolation can be expanded in powers of the pair potential. These powers include half-
integer indices. As a result, it is predicted that clusters formed at least by the contribution of a sufficiently
long-ranged attractive force can exhibit a fractal structure even in a Yukawa fluid. The structure has a fractal

dimension of 1.5, which is near that for the cluster-cluster aggregd8ii63-651X98)07811-9

PACS numbd(s): 61.43.Hv, 64.60.Ak

I. INTRODUCTION tribution is the attractive force between particles which can
drive the phase separation. The effective range of the attrac-
Particular properties of a fluid can be influenced by clus-ive force contributes to the characteristics of the distribu-
ters formed by the attractive force between particles constition. In fact, the effective range of the force can be an im-
tuting the fluid. Present interest will be focused on the genportant factor that determines the liquid phase stability
eration of nonuniform states due to the formation of clusters In order to include this factor in the present study, a
created by the attractive force. bound state for a pair af and| particles is defined as that
The electrical conductivity of liquid mercury maintained satisfying the conditiorE(p;;) < —u;;(r), with the pair po-
at low density at a temperature near the critical point, tential u;;(r) and relative kinetic energl(p;;).
decreases with a rather steep gradient as the density of the An alternative definition given in Ref8] depends on the
mercury py_ decrease$l] The difference between the ab- distance between the andj particles, and provides a bound

Sorption of infrared at a particu'ar dens'ﬂwgzpl’_ig and that State f0r a pair Oi andj particles |fr SatiSfiesr$r’ f0r a

at a density below!. increases as temperature decreaseéjarticu'ar value '. The criterionr<r’ for the bound state is
y W, P simple. However, it is difficult to distinguish the condition

This difference at temperatures lower thHBhis much larger E(pij)>—u;(r) for r<r’ from the condition E(p;)<
than that nealf; [2]. For anH, fluid nearT, the real partof — —y,(r) for r<r’. Therefore, the bound state defined by the
the dieleCtriC constant determined Using Optical reﬂectiVitycriterion rgr’ provides a |eSS Satisfactory temperature de_
and absorption measurements increases sharply at a partiGdsndence than that of the bound state defined by the criterion
lar density apy, increases3]. For inducing these phenom- g(p.y<—u;(r). In the present work, such a difficulty is
ena, nonuniform fluid states resulting from the formation ofavoided, since the conditioB(p;;)<—u;;(r) is applied as
clusters ofHy atoms in eactH fluid can play a role. The the criterion for defining the bound state.
lowest energy required for exciting an electron contributing Thus, a cluster resulting in the nonuniform distribution is
to the formation of a cluster decreases toward zero as thassumed as an ensemble of particles joined as particle pairs
number of metallic atoms constructing the cluster increasesatisfying the conditiorE(p;;)< —u;;(r). Such clusters can
The distribution of cluster sizes in a fluid consisting of me-result in percolatioh9]. In the present work, the dependence
tallic atoms is a factor which determines the dependence aff such percolation on the effective range of the attractive
optical absorption on the frequency of ligh]. force is studied. Using a Yukawa fluid, particular attention is
Near liquid-vapor critical points, the viscosities of fluids paid to the dependence of the liquid phase stability on the
exhibit asymptotic divergence. Berg and Moldo{8} deter-  effective range of the attractive force given by the pair po-
mined the critical exponent characterizing the asymptotic ditential [7]. Here, attention is focused on the dependence of
vergence by measuring the viscosities of carbon dioxide anthe generation of the percolation state on the effective range
xenon near their critical points. In these fluids, the distribu-of the attractive force.
tion of particles can never be uniform due to the large fluc- The dependence of the generation of the percolation state
tuations in densities. Such fluctuations can result in anomaen the effective range can be found by applying a heuristic
lies for the electrical and optical properties of tHg fluids.  percolation criterion to systems composed of core-soft-shell
Similarly, the fluctuations can result in a characteristic in-spheres with an attractive square-well potenfit0]. For
crease in the viscosities of fluids near the critical pojBs  Yukawa fluids, the dependence of the generation of the per-
A factor enhancing the generation of the nonuniform dis-colation state on the effective range can be estimated by use
of an adjustable parametgt1].
In order to simplify the estimate of the percolation based
*Electronic address: kanekous@ppp.bekkoame.or.jp on the criteriorE(p;;) < —u;;(r), an appropriate mathemati-
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cal treatment is required for solving the integral equation for
the pair connectedness. The approximate treatment given in
the present work is similar to the mean spherical approxima-
tion (MSA) for the Ornstein-Zernike equation and results in\yhere y=[ BE(p;)]*2 [8]. If —Bu;;<O0, the probability
a simple estimate for the Yukawa fluids. However, the powery, st bepp(r)= O.l !

of the pair potential in the closure for solving the integral According to Eq.(1), the Mayerf function f;; = e A
equation differs from that in the closure for the MSA. The —1 is given as the sum of’ =p,(r;)e i aan fx=[1
closure including the terrfu;; (r)]*? is derived in Sec. IIl. ~pp(ri)Je Ui 1. Using this sum,”Mayer's mathematical
To obtain analyt!cal solutions for a Yl.JkaV\.'a fluid, the CIOSurecluster]s(diagrams defined in terms &fbondg constituting
must be approximated. Two approximations for the closur . can be expressed as those composeﬂﬁoteachfﬁ is
can be used. An approximation overestimates the decay efined in terms of afi* bond andfi’] Thet* bond cor-

the closure due to the factor of ¥2. Another approximation ds t i of particl tisfving th it
overestimates the long-ranged contribution of the closure. | esponds 1o-a palr ot particles sa |sfy|ng € condition
=(pij)<—u;; . If particles are joined by thé™ bonds, the

Sec. IV, it is demonstrated that the pattern of the phase di ensemble of the particles forms a physical cluster. The physi-

grams resulting from the former is similar to that resulting . ) o .
from the latter. The pair connectedness in the present wor a_ll cluster consists of the particles contributing to a diagram
with at least one path of all thE* bonds between the root

exhibits the distribution of particles within a cluster where ™" " . . . ; :
the particles are linked via bonds defined as bound states ints i andj, at Wh'Ch thei qndj pal’t.IC|eS are_located..
pair particles satisfying the conditidB(p;;)<—u;(r). To ence, the collection of such diagrams is that which contrib-
the creation of the cluster in a fluid, either particle—clusteru'[es Py . . i
aggregation or cluster-cluster aggregation contribute. If the The CO"_eC“O” of diagrams Contrlbl_ltlng t?ij can +be
distribution of the particles has a fractal structure, it may be>eParated into Ehg sum of two parts, given@y andN;; .
a characteristic resulting from the cluster-cluster aggregatiorii€re, the parC;; is the contribution of non-nodal diagrams
According to the expansion of the pair connectedness tith at least one path of afi” bonds betweei andj. The
powers of a pair potential, the clusters generated in @artNﬁ represents the contribution of nodal diagrams with at
Yukawa fluid can have a fractal structure when the attractivéeast one path of alf* bonds betweei andj. Hence,Ng
force is long-ranged. In Sec. V, it is demonstrated that aan be determined by the convolution integral of the product
fractal dimension for the structure is close to that for theof ijr and Pj; . Thus, P;; can be expressed by an integral
fractal structure resulting from cluster-cluster aggregation. equation[9] having the same mathematical structure as the
Ornstein-Zernike equation, as

pb(r)=2w‘1’2JO 'y vdy, @

Il. PAIR CONNECTEDNESS 4 il .
Pij:Cij+z Pkf CikPydry, (3
The pair connectednesy; (r) for estimating the percola- k=1
tion is introduced as the probability;p;P;;(r)dr;dr; that
both ani particle in a volume elememr; and aj particle in
a volume elemendr; belong to the same physical cluster. In
the abovep; andp; are the densities of thieandj particles,
respectively, for a uniform distribution. If a cluster has a  For some fluids, analytical solutions of the Ornstein-
fractal structureP;;(r) should provide the characteristics of Zernike equation can be obtained by considering the mean
the fractal structure. If the probability that thparticle indr; spherical approximatiofMSA). In the MSA, the direct cor-
and thej particle indr; do not belong to the same cluster is relation functionc;; is given as the sum of the short-ranged
expressed ap;p;Dj;(r)dr;dr;, P;;(r) can be related to the and long-ranged contributions. Similarly, E@®) could be

wherem is the number of species.

IIl. APPROXIMATION SIMILAR TO MSA

pair correlation functiorg;;(r) asg;;=Pj;+D;;. Here, the
physical meanings oP;; and of D;; require IimePiJ:O

and lim __Dj;=1, since lim__g;;=1.
r—oo r—o

On the other hand, to distingish between a bound stat

E(pij)=—u;; and an unbound stat&(p;;) > —u;; in the ex-

pression ofg;;(r), which can be given using the grand par-

tition function, the factor expfBu;) is expressed as the sum
of two factors given as

e Ali=pp(r)e Pli+[1—py(r)]e P, (1)

wherep is defined aB=1/kT. Here, k is Boltzmann’s con-
stant andr is the temperature. In E¢l), p,(r) (the so called
pairwise bond probabilityis the probability that a pair of
and]j particles satisfies the conditida(p;;) < —u;;, so that
pp(r) can be expressed as

solved simply ifCﬁ can be given as the sum of the short-
ranged and long-ranged contributions.

Fortunately, the behavior oE;; for a large distance be-
weeni andj can be readily determined. Using the contribu-
ion Nj; of the nodal diagrams fof bonds, the pair-
correlation functiongipjY due to the Percus-YevickPY)
approximation can be given hyf;"e®tii=1+N;;. Further-
more,N;; can be separated inklfjr and a remainddkli’j (i.e.,
all nodal diagrams which do not include paths of #fl
bonds between and j), so that the PY approximation is
expressed agj;'=e Ai(1+N; +N?). If, with use of the
above, the relationB;;=C;; + N7 , e Ai=f; +f£+1, and
gjj=Pi;+Djj are considerecgﬁ due to the PY approxima-
tion results in

Py =fijgij e+ (f] +1)(P;— Cj) (43

and
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f*+1+N*(f*+1)

—(f +1)gfYefMi— (5 +1)(P;—Cjf).  (4b)
B”u—f +fi+1, and

Eq (4a) can be

By conS|der|ngf pb(r)efﬁuu
the PY approxmatlorg Y(1- eBU.,) cP
rewritten as

IJ’

[1—pp(r)]e Al
1-[1—py(r)]e”PHi

ij ij

_ pp(r)chY
(1—ePUi){1—[1—py(r)]}e Ui

©)

When the distance betweeandj is sufficiently large| Buj;|
should be small. Equatiof2) can then be given approxi-
mately as

4 4
—  (—Aa.)32_ ____(_ p.)\52
pb(r) 3\/;( Buu) 5\/;( ,BU”)

2
+—=(—Buy) "+

7w

The substitution of this approximation into E&) results in

PY 4
t_ 3/2
Cij _IBUI]( \/—( BU”)
22
— T (—Bu: )2 ...
15\/;( Buij)>+ )

4 1
— Bujj— ﬁ(_ﬂuij)g/z_ E(_ﬁuij)z

t f( Bu;;)>+ - - )

If ¢ij"/(—pBu;;)=1 for the MSA is substituted into this re-
sult, C; for 1<r can be given as Cj~
4/(3\/_)( Bu;;)*% Here, the condition {-,Bu”)PIl
<4)(37)(— ,15’u|,)3’2 has been assumed for<k .

For the PY approximation and the MSA, the correlation

function g;; satisfies the relation given as

AN
— Bujj\ 1—exp Bujj) 2

=1
lim 9i = I|m

—,BU” r—

The conditionP;; /(g;; —1)<1 is always satisfied, sinag;
—1=P;;+D;;—1. As a result, the magnitude &f; for 1
<r should satisfy

gij_1> Pij < Pij
—Buij —BU (= Bu) VP

Therefore, the following relation can be derived:
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.y Pi
= lim————=
20 (= Buy)t?

and the above assumption can provide validity.
Thus, an approximation similar to the MSA can be ob-
tained for solving Eq(3) as

C+ C0++_( Bu”)3/2

N

whereC?" is the short-ranged contribution. By considering
that a hard-core potential resulting in the completely short-
ranged interaction betweerandj particles does not directly
contribute to the interaction between them located beyond a
particular distancer;; , it is assumed that

(6)

Ci'(n=0 for r=0y, (7)
whereay; is given asoj; = o+ oj) with the diameterr; of
the hard core of theparticle and the diameter; of the hard
core of thej particle. If the short-ranged COI’ItI’IbUtI(ID
can be neglected far=o;; , the mathematical treatment for
Eq. (3) is considerably simplified, as it was in the MSA. As
a result, the use of Eq7) can simplify the estimation of the
percolation.

In order to solve Eq(3) analytically for a fluid consisting
of hard spheres interacting with the Yukawa potential given
as

v 1
Uij(r):_KljFqu_K(r_o'ij)],

the long-ranged contribution in E¢6) must be somewhat
modified as

—zr

Cij (N =Cj" (N +Kyj—, (8a
where
7 —1/2 70
Kij 3\/—(BK|])3/2 ij e’ i, (Sb)
with
1 1
7= 3k+—|. (80
2 aij

Here, Rij and z are approximated by requiring the relation
4(3\m)[ — Buij(r) 1¥?=Kije” #Ir for 0<r—o;<1.

In addition, the above requirement results in an approxi-
mate expression given as

1 e?21 r

3/2 T
o ' 207j;

C)

This means that the condition a=0 does not correspond
to that ofz=0 when the approximation is applied. Thus, on
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using the approximation given by Ed9), the decay of
C; (r) due to the factor of %2 can be somewhat overesti-
mated.

IV. PERCOLATION THRESHOLD

Using Eq.(8a) and Baxter'sQ function[12], Eq. (3) can
be solved analytically[11]. If the calculations for the
Orstein-Zernike equatiofil2—14 are considered?(r) and
C™(r) satisfying Eq.(3) for a Yukawa fluid composed of a
single component are given by

d )
27rP(r)=— aQ(r)-i—prfo Q) (r—t)P(|r—t|)dt
(10
and

d o d
2wrCH(r)=— aQ(r)—pro Q(t)aQ(r—H)dt.

13
The functionQ(r) in Egs.(10) and(11) is introduced as

Bk=1-p f " Q(rydr (123

0

and can be of the forms given by Ed%) and(8a) as

QN =(r—o)q+C(e e 2)+De ¥ (r<o)
(12b
and
Q(r)=De™?" (o=r). (120

In Egs.(12b) and(120), o is the diameter of the hard core of

a particle. The unknown coefficien6, D, andq in Egs.
(12b) and (129 can be determined using Eq40) and(11).

If IimuijﬂmP”:O due to Eq.(4) and Eq.(12b) are con-
sidered, Eq(10) for r <o results in

—q+zée‘z’+zbe‘zr—2wpbe‘z'f P(t)e #tdt=0.
0
(13

Thus, the relation between the left- and right-hand sides i

Eq. (13) gives the restrictions for the coefficients as

q=0 (149
and
C=-[1-P(2)]D, (14b)
where
|5(z)5217§j:P(t)e’Zttdt. (140

By consideringC®*(r) and Eq.(120), Egs. (8a and (11)
result in
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277f<=2b—2p|5@(2), (15
where
Q(s)= J Q(t)e s'dt
0
_é e eZ(r_e—S(r 1_e—SU' +|':‘) 1 16
—-€ stz s s+z° (16

The expression given by E¢L6) can be obtained by substi-
tuting Eqg.(12b) into the integral.
On the other hand, Eq10) for r <o can be expressed as

0=zCe #+zDe ¥+ ZWerwQ(t)(r—t)P(|r—t|)dt.
(17)

Equation(17) is equivalent to Eq(13) which has no singu-
larity for 0<r<«, so that Eq.(17) is satisfied for 6<r
<o, Then, if each factor given by Ed17) is subtracted
from each factor given by Eq10), a formula foro<r can
be obtained as

o r
27rP(r)= —zCe‘”+27-rpf Q) (r—t)P(r—t)dt.
0
(18
The Laplace transformation of E¢L8) results in a relation

betweenP(z) andQ(z) as

2z ~ — 1 —2z0
;P(Z)[l—PQ(Z)]— —5Ce (19

By considering Eq(14b), the substitution of Eq(16) into
Eq. (15) results in

D _mo
o2 6¢
244) k ) A 1/2
><1— 1—W;{1—(1—e 2)1-P(2)]}

1-(1-e )Y 1-P(2)]
(20

there¢ is the volume fraction defined as

¢= gp03-

On the other hand, by again considering Etdb), the
substitution of Eq(16) into Eqg. (19) yields

1%

D wzo

o2 3¢
y P(2)
e 227+ 2P(z)e *(1-e ) +[P(2)]*(1-e *)?
(21)
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Using Egs.(19) and (20), the unknown coefficient® and

P(2) can then be determined.
On using Baxter'sQ function, the mean cluster si&{11]
can be obtained as

S=[1-pQ(0)] 2.

Using Egs.(14b and Eq.(16), Q(0) can be determined as

(22

zQ(0)=—-e *(e*~1-20)[1-P(2)]D+D. (23

By substituting Eq(22) into Eq.(21), the mean cluster size
Sis given as

6
s=(1- 22

D
+ —Z0
— —0_2{(1 zo)e

-2

+[1-(1+z0)e 1P(2)} (24)

Therefore, the percolation threshold, at which- AQ(0)
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cosity due to the lack of percolation induced in the liquid
phase can change to another state of high viscosity due to the
percolation asp increases.

If the contribution of the attractive force between particles
generates the liquid phase even when the effective rande
is narrow, particles in the liquid phase should be close to
each other. For the generation of the liquid phase, suffi-
ciently dense parts at least must be formed in the fluids.
These dense parts can correspond to high-density regions
formed as clusters due to the percolation criterion used in the
present work. On the other hand, particles also must be close
to each other in order to induce the percolationgif! is
small. Therefore, it is expected that the percolation state may
always be found in the liquid phase, if the liquid phase is
generated even wher ! is small. This phenomenon is
demonstrated by the diagrams given far=7.5 and 25 in
Fig. 1.

Thus, it is inferred that the liquid phase contains ex-
tremely large clusters, if the liquid phase is generated in a
fluid consisting of particles interacting with a short-ranged
attractive force. Conversely, ¥~ ! is not small, the genera-
tion of the liquid phase does not require clusters of extremely

=0 should hold, can be estimated using the following equayge size, since particles should readily be retained in the

tion:

6¢ D

-1
pr— 2] —(1+zo)e 2—[1—(1+z0)e ]P(z)=0.
(o8

(29

Equation(24) is derived from Eq(23). The value ofP(z) at
the percolation threshold is obtained by substituting [26)
into EqQ. (24), as

PP=[(1-e *)2-2+2(1+z0)e ] *
Xe Wz te P —[(z0+e )2~ (1-e )?
+2-2(1+z0)e Y3, (26)
wherePP is the value ofP(z) at the percolation threshold. If

the value oK at the percolation threshold is exressed&s
the value ofKP can be obtained by modifying EGL9) as

zo DP 3¢
prar iRt

2

O«
o

—e " )3(1-P")]

(27)

where DP is the value ofD evaluated from Eq(20) for
P(z)=PP. If Eq. (8b) is considered as the relation between
K andK, the substitution of Eq(20) into Eq. (27) results in
a relation expressed asKi7x= ¢” with v=2/3. Here,K” is
the value ofK at the percolation threshold. The relation
1/KPox” with v=1 corresponds to that given by Xu and
Stell[11].

The percolation thresholds evaluated using &) with

KP
o

0,2

liquid phase due to the attractive force contributing over a
long range.

Moreover, the percolation thresholds given in Fig. 1 dem-
onstrate that the volume fractiah at the percolation thresh-
old for a particular value oK decreases as the effective
range ! is extended. Behavior similar to this has been
found in a percolating system composed of core-soft-shell
spheres with an attractive square-well poter{tidl].

If the effective rangex ! is extended, overlaps of the
effective range due to each particle increase. The number of
particles with which a particle interacts increases as the over-
laps of the effective range increase, so the increase th
can enhance a cooperative effect which contributes to the
formation of the nonuniform particle distribution. Thus, ei-
ther the generation of the percolation or the aggregation of

b

Q.8

T
% o2 oa

?

FIG. 1. The dependence of percolation @ngiven by [ ko
=(2z0—1)/3] in the Yukawa fluids. The thick solid curves are the
loci of the percolation thresholds. The dashed curves are the loci of

Egs. (8b) and (8c) are represented for each Yukawa fluid points for which the compressibility is infinite, and have been
(kor=0.2,0.8,3,7.5,25) in Fig. 1. The percolation thre{3hO|_devaluated on the basis of R¢L5]. The thin solid curves are the
for ko=3 demonstrates that the state of no percolation inoci of the points in a lower region for which no real solution can be

the liquid phase can be induced wheris small. This phe-

obtained for the Ornstein-Zernike equation for a fluid, and have

nomenon is similar to that found from the phase diagram irbeen evaluated on the basis of Rgf3]. In (b), no dashed curve
Ref. [9]. The phenomenon suggests that a state of low visexists. In addition, BK/o) "%, ko, and¢ are dimensionless.
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B @ ing the long-ranged contribution. However, the diagrams
1 60} aooof representing the percolation behavior in Fig. 2 have the same
pattern as those in Fig. 1. The maximum point at which the
Ornstein-Zernike equation for a fluid results in a real solution
shifts to an upper position in each phase diagram as 1/
increases. Such a shift can exceed the shift of the percolation
threshold for large values of 6. The overestimate for the
decay ofC;; j (r) due to Eq(8c) does not cause the pattern of
the d|agrams in Fig. 1 to be derived. Therefore, it is inferred
that the tendency toward the generation of percolation is less
dominant than that toward the aggregation, resulting in only
the phase separation ascid increases.

2000}

4 1000

% o'.zw' o4 o

FIG. 2. Same as in Fig. 1, except fer=2z0/3. V. THREE PARAMETERS

particles resulting in only the phase separation can be en; The numbernpg, of particle pairs satlsfylng the bound
hanced as<~ ! increases. It is, however, expected that the ondition defined by the inequalify(p;j) < —uj (r) can in-

crease aK increases. Moreovenpalr can mcrease both as
tendency toward the generation of percolation is less domi-
Yincreases and ag increases. The variations i « 1,

nant than that toward the aggregation resulting in only phasé
and ¢ can result in variations iP(r) and ing(r) due to the
separation. In the distribution of particles surroundingi an change imyy. Then, the behavior dP(r) andg(r) due to

particle, particles satisfying the cntenoE(p”) u,,(r) the variation inK can differ from that due to the variation in
should not increase considerably as! increases, since the <L since the increase iK can enhance the maanitude of
increase ink ! does not deepen the Yukawa potential. The® v 9 1

phenomenon discussed here can be recognized in Fig. 1. In ”(r) in the range &cr — o<1, while the variation inc™
addition, it must be considered thg8KP/a] ! given for cannot change it in the range. Similarly, the behavioP (f)

small values ofco in Fig. 1 can be somewhat too small. andg(r) due to the variation i) can dlffer from that due to
On applying the Yukawa potential to E(), the decrease the variation inK. Without changes in-u;; (0') increases in

in C* £(r) due to the factor ¢ ¥1)32 can be much more k1 as well as in¢ lead to an mcrease in the number of

dommant than that due to the factor ()2, asr increases. particles with which a particle interacts. Thus, the behavior

. . . _1
Considering this, the contribution from the factorr(£f? can of P(r) andg(r) due to the increases in either * or ¢ may

be approximated by d/in Eq. (6). As a result, an alternative diffﬁgrftrl?r:gt:;;tpd(ﬁ tcoa;hebeing:iﬁstg:j readily in the range
imation forl — Bu:: (1) 132 ; ,
approximation fof = Au;; (r) J°* can be given as O<r—o<l1. If Egs. (14b and (18) are used with

IimuiﬁxPij =0 due to Eq(4), it is given as

3\/—[ Bu;;(r)]1%?
2woP(c")=2e2[1-P(2)]D,
4 (IBK”)SIZ 1 + i
\/— T exd — 3 «(r—ayj)], (288 whereP(c")=lim _ P(c+9).
The pair correlation functiog(r) for 0<r — o<1 can be
so thatz must be estimated as given on the basis of Ref13] as

NJw

Z=3k. (28b BK
9(o")=g"+ —[Fo(ko,¢) + ko XFy(ka,$)] 7%,
This approximation somewhat overestimates the long- o
ranged contribution ofC; j(r), since the contribution of
(1/r)%2 is approximated as (& (1kr). Thus,z given by =~ Where
Eq. (28b) differs fromz given by Eq.(8¢). This difference is
considerable whero is small. Whereis given as Eq(28b) hs. 1 2¢
instead of Eq.(8c), the percolation in each Yukawa fluid 9= 1t |
(k=0.02,0.05,0.15,0.2,0.8,3,2Behaves as shown in Fig.

2. The values of[ BK/o]™ ! at the percolation threshold

given in Fig. 2 are larger than those at the percolation thresh- Fo(ko,d)=1+ i(l_eﬂm)ﬂ

old given in Fig. 1. This tendency develops asd/in- KO 1-¢
creases.
The behavior of the percolation threshold described above 4 Ko 1 KO\ _ o
: R - - ——|1+—]e
means that an overestimate for the long-ranged contribution (ko)? 2 2
of C;i (r) can lead to an overestimate fg8K"/a]~*. When
the decay oC;f (r) due to the increase inis overestimated, 3¢ 14K 3¢ )
the value oi[BKP/a] ! is smaller than that for overestimat- 1-¢ 1-¢)’
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FIG. 3. The ratioP(a*)/g(c*) as a function of BK/o) " for
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the Yukawa fluids. To evaluate, Eq8b) and(28b) are used for the

relation betweerk and K. The solid curve is determined foro
=3 and ¢=0.1. Points indicated by the solid circle®] are de-
termined for kc=0.8 and ¢=0.1. Points represented by open

circles (O) are determined foko=0.2 and¢=0.1. The dashed

line with a point indicated by the symbolx() is determined for
xo=3 and ¢$=0.35. The thin solid line with a point indicated by
the symbol () is determined foxo=0.8 and¢=0.35. The dot-
dash line with a point indicated by the symbot) is determined

Furthermore, wherP(r)/D(r) is given at least in the
range G<r — o<<1, its behavior can be considerably insensi-
tive to variations in eithek ! or ¢, if the values ofx ! and
¢ fall in the particular ranges. The rati®(r)/D(r) can be
related toP(r)/g(r) usingP(r)/g(r)=[1+D(r)/P(r)] L.
Here,D(r) is given by Eq.(4b), and expresses the partial
distribution of particles surrounding a particle. Then the par-
ticles resulting in the partial distribution described Dyr)
do not belong to the cluster to which the particle belongs.

Particles in a shell surrounding a particular particle and
having a certain thickness can be divided into two groups.
One group consists dfi; particles which belong to a cluster
with the particle. The other group consists N particles
belonging to clusters to which the particle does not belong.
Extension in the effective range ! of the attractive force
can result in increases in botk; and N,. However, the
extension does not vary the maximum depth of the Yukawa
potential, so thalN; cannot increase considerably as?
increases. As a result, it is expected that the increabk is
more dominant than that itN; as ™! increases. This is
demonstrated in Fig. 3. According to Fig. 3, the value of
P(o")/g(o™) at the percolation threshold decreasesas$
increases. This means that the rdtig/N,; near the particle
increases ag ! increases, sincg(o*) is equal toP(c™)

for ke=0.2 and ¢=0.35. Each point indicated by the symbol +D(c ™).
(X) expresses the percolation threshold. Each point denoted by an The increase ifN,/N; can suppress the development of
arrow expresses the maximum point at which the Ornstein-Zernikglusters. As a result, ik Llis sufficiently large, sizes of the

equation for a fluid results in a real solution.

1
Filko,d)= ——(1-e™")

and

el
(ko)® 2 2 1-¢’
Fo(KU,¢) )2
X(X+1) X+—KUF1(KU,¢)
BK 6¢

o [(ko)?Fy(ko,$)]?

clusters in the fluid remain small while the fluid falls in a
state where it can undergo the phase separation. Thus, it is
inferred that owing to the increase My, /N,, the tendency
toward the generation of percolation is less dominant than
that toward aggregation, resulting in only phase separation as
k1 increases.

On the other hand, the rati®(c")/g(c™") at the perco-
lation threshold increases as the effective range de-
creases. This means that the number of particles must be
large near each particle to induce the percolation if the ef-
fective range is narrow. This phenomenon is reasonable.

VI. FRACTAL STRUCTURE

If clusters can be found in Yukawa fluids, it is predicted
that the clusters can have a fractal structure in the range of
where both—Bu(r)<1 and exp—«(r—oa;)]~1 can be sat-
isfied. When the magnitude o3K/o) ! is large, — Bu(r)

In Fig. 3, the behavior described above can be recognized small, even for=¢. If o is small, the magnitude of

as that of the ratioP(r)/g(r) in the range &r—o<<1.

While the ratioP(o*)/g(c™) increases a¥ increases, it

hardly changes for the variations in either® or ¢ when the

values ofk ! and o fall in the particular ranges.

—L 1+

4
3JF(

16 64
—3\/—( BU|J)1/2+_( Bulj) ( 27m 3/2 5\/—)( IBU|])3/2+

1
—Buip) V| 5+

2

(BK/o) 1 at the percolation threshold is large as shown in
Fig. 1 (Fig. 2. Hence, the clusters can be formed even when
—Bu(r) is small, if ko is small. By considering this, the
expansion of Eq(5) in powers of— gu;; results in

16
on | BUD+--- |-
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of (BK/o) ! at the percolation threshold is large i is
small. In this case, it is inferred that the fractal structure of
clusters can develop considerably, if the effective rargé

is extensive.

0.5

10°%}

3 o/fK
0.8 o/BK =45

S

Ko
Ko

100 VIl. CONCLUSIONS

A bond between particles is defined as a bound state be-
tween them using the criterida(p;;) < — u;;(r). A cluster is
o 02 o4 regarded as the distribution of particles linked via such
o bonds. The structure linked via the bonds can have a fractal
structure with the fractal dimension 1.5. This value is close

FIG. 4. The increases i due to the increase in the volume . . .
. . . to a fractal dimension for the fractal structure resulting from
fraction ¢». The values ofp at the percolation thresholds are given

as ¢=~0.115,0.394. In additior is dimensionless. cluster-clqster aggregation. o
The pair connectedness relevant to the distibution can be

If the approximation given by Eq€6) and (7) and CEY/ given by the i_ntegral equat_ion. If the cIo_sure given in the
(—Bu;;)=1 for the MSA are considered in this expansion, Present work is used, the integral equation can be solved

sure, analytical estimations of percolation can be obtained
Pij~(—Bu;)¥= (290 readily for a Yukawa fluid although the dependence of the

closure onr must be approximated. One approximation is
given as the overestimation for the decay of the closure due
to the factor ofr2. Another approximation is given as the
overestimation for the long-ranged contribution of the clo-
P(r)~r—®, a=15. (30)  sure. Fortunately, the percolation behavior resulting from the
former is similar to that resulting from the latter. However,
In the range ofr where exp—«(r—oj)]~1 can be satis- the values of BK/o]~ ! at the percolation threshold given
fied, P(r) can decay withr — ¢ having a noninteger index. by the former are smaller than those given by the latter. This
The pair connectedness gives the average characteristics tehdency develops asdd increases.
the particle distribution in a cluster. Therefore, it is predicted Extension in the effective range ! enhances the forma-
that clusters resulting in a nonuniform fluid can have a fraction of the nonuniform particle distribution, and can result in
tal structure with the fractal dimension 1:58—«) due to  dense parts and rare parts. In the dense parts, the increase in
Eq. (30). This fractal dimension is close to a known fractal the number of particles which do not satisfy the condition
dimension(i.e., d;~1.75) for the fractal structure resulting E(p;;)=<—u;;(r) for a particular particlée.g., ani particle
from cluster-cluster aggregatidt6]. As far as Yukawa flu- can exceed the increase in the number of particles satisfying
ids are concerned, the structure of a cluster can be fractal #te conditionE(p;;)=< —u;;(r) for the particle, if the effec-
least in the range ofr where both —Bu(r)<1 and tive range extends sufficiently. If an effect resulting from the
exd —«(r—ojj)]~1 can be satisfied. former is considerable, the dense parts can be regarded as an
Then, this range should fall within the extent of the clus-ensemble of small clusters. Therefore, a tendency toward the
ter of particles. This requirement is satisfied by the percolatgeneration of percolation can be less dominant than that to-
ing clusters. Also, it can be satisfied even near the percolawvard the aggregation, resulting in only phase separation as
tion thresholds, since clusters can have large sizes near the ! increases.
percolation thresholds as seen in Fig. 4. In addition, the structure linked via the bonds defined by
The range of where exp—«(r—o;)]~1 can be satisfied the criterionE(p;;)<—uj;(r) can develop the fractal struc-
is more extensive iko is smaller. Moreover, the magnitude ture ask ™! increases.

Hence, in the range af where exp—«(r—o;;)]~1 can be
satisfied, the pair connectedndg) for the Yukawa poten-
tial can behave as
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